NP-completeness and degree restricted spanning trees
نویسندگان
چکیده
منابع مشابه
Degree Bounded Spanning Trees
In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set S ⊆ V(G) of cardinality n(k − 1) + c + 2, there exists a vertex set X ⊆ S of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c − 1. Then G has a spanning tree T with maximum de...
متن کاملDegree-constrained spanning trees
S of the Ghent Graph Theory Workshop on Longest Paths and Longest Cycles Kathie Cameron Degree-constrained spanning trees 2 Jan Goedgebeur Finding minimal obstructions to graph coloring 3 Jochen Harant On longest cycles in essentially 4-connected planar graphs 3 Frantǐsek Kardoš Barnette was right: not only fullerene graphs are Hamiltonian 4 Gyula Y. Katona Complexity questions for minimally t-...
متن کاملMinimum Restricted Diameter Spanning Trees
Let G = (V,E) be a requirements graph. Let d = (dij)i,j=1 be a length metric. For a tree T denote by dT (i, j) the distance between i and j in T (the length according to d of the unique i − j path in T ). The restricted diameter of T , DT , is the maximum distance in T between pair of vertices with requirement between them. The minimum restricted diameter spanning tree problem is to find a span...
متن کاملLow-Degree Minimum Spanning Trees
Motivated by practical VLSI routing applications, we study the maximum vertex degree of a minimum spanning tree (MST). We prove that under the Lp norm, the maximum vertex degree over all MSTs is equal to the Hadwiger number of the corresponding unit ball; we show an even tighter bound for MSTs where the maximum degree is minimized. We give the best-known bounds for the maximum MST degree for ar...
متن کاملDegree-bounded minimum spanning trees
* to be exact, times the weight of a minimum spanning tree (MST). In particular, we present an improved analysis of Chan’s degree-4 MST algorithm [4]. Previous results. Arora [1] and Mitchell [9] presented PTASs for TSP in Euclidean metric, for fixed dimensions. Unfortunately, neither algorithm extends to find degree-3 or degree-4 trees. Recently, Arora and Chang [3] have devised a quasi-polyno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1992
ISSN: 0012-365X
DOI: 10.1016/0012-365x(92)90130-8